lunes, 28 de abril de 2008

Tratamiento de residuos nucleares


En general, cualquier aplicación industrial genera residuos. Todas las formas de generación de energía nuclear también los generan. Tanto los reactores nucleares de fisión o fusión (cuando entren en funcionamiento) como los GTR generan residuos convencionales (basura, proveniente por ejemplo de los restos de comida de los trabajadores) que es trasladada a vertederos o instalaciones de reciclaje, residuos tóxicos convencionales (pilas, líquido refrigerante de los transformadores, etc.) y residuos radiactivos. El tratamiento de todos ellos, con excepción hecha de los residuos radiactivos, es idéntico al que se da a los residuos del mismo tipo generado en otros lugares (instalaciones industriales, ciudades,...).

Es diferente el tratamiento que se emplea en los residuos radiactivos. Para ellos se desarrolló una regulación específica, gestionándose de formas diferentes en función del tipo de radiactividad que emiten y del semiperiodo que poseen. Esta regulación engloba todos los residuos radiactivos, ya procedan de instalaciones de generación de electricidad, de instalaciones industriales o de centros médicos.

Se han desarrollado diferentes estrategias para tratar los distintos residuos que proceden de las instalaciones o dispositivos generadores de energía nuclear:

Baja y media actividad. En este caso se trata de residuos con vida corta, poca radiactividad y emisores de radiaciones beta o gamma (pudiendo contener hasta un máximo de 4000 Bq g-1 de emisores alfa de semiperiodo largo). Suelen ser materiales utilizados en las operaciones normales de las centrales, como guantes, trapos, plásticos, etc. En general se prensan y secan (si es necesario) para reducir su volumen, se hormigonan (fijan) y se embidonan para ser almacenados durante un periodo de 300 o de 500 años, según los países, en almacenamientos controlados. En España este almacenamiento se encuentra en la provincia de Córdoba (El Cabril).
Alta actividad. Estos residuos tienen semiperiodo largo, alta actividad y contienen emisores de radiaciones alfa (si son de semiperiodo largo solo si superan concentraciones de actividad de 4000 Bq g-1). Se generan en mucho menor volumen pero son altamente nocivos inmediatamente después de ser generados. Generalmente, aunque no son los únicos, se trata de las propias barras de combustible de los reactores de fisión ya utilizadas. Para ellos se han desarrollado diversas estrategias:

1_Almacenamiento temporal: en las piscinas de las propias centrales (a veces llamados ATI), durante la vida de la central (habitualmente 40 años), o en almacenamientos construidos a propósito. En España aún se encuentra en proyecto el ATC).
2_Reprocesamiento: en este proceso se lleva a cabo una separación físico-química de los diferentes elementos, separando por una parte aquellos isótopos aprovechables en otras aplicaciones, civiles o militares (plutonio, uranio, cobalto y cesio entre otros). Es la opción más similar al reciclado. Sin embargo en el proceso no todos los elementos reciclados son totalmente reaprovechables, como por ejemplo el neptunio o el americio. Para estos, en un volumen mucho menor que el inicial, es necesario aun el uso de otras opciones como el almacenamiento geológico profundo.
3_Almacenamiento Geológico Profundo (AGP): este proceso consiste en estabilizar las barras de combustible gastadas en contenedores resistentes a tratamientos muy severos que posteriormente se introducen en localizaciones similares a las minas, ya existentes (como en el caso de minas profundas), o construidas para tal fin. Suelen estar en matrices geológicas de las que se sabe que han sido estables durante millones de años. Las más comunes son calizas, graníticas o salinas. Los técnicos estiman que estos AGP deberían poder preservar íntegros los residuos durante los miles de años en que sigan siendo tóxicos sin afectar a las personas de la superficie. Su principal defecto es que sería muy difícil o imposible recuperar estos residuos para su uso útil en el caso de que técnicas futuras puedan aprovecharlos eficientemente.
4_Transmutación en centrales nucleares de nueva generación (Sistemas Asistidos por Aceleradores o en reactores rápidos): estos sistemas usan torio como combustible adicional y degradan los desechos nucleares en un nuevo ciclo de fisión asistida, pudiendo ser una alternativa ante la dependencia del petróleo, aunque deberán vencer el rechazo de la población. El primer proyecto será construido alrededor del 2014 (Myrrha). Esta técnica se estima aceptable para aquellos radioisótopos de semiperiodo largo para los que no se ha hallado ninguna aplicación todavía. Esos isótopos más problemáticos son los transuránidos como el curio, el neptunio o el americio. Sin embargo para emplear esta técnica se precisan métodos adicionales, como el reprocesado previo.
Para gestionar los residuos radiactivos suele existir en cada país un organismo creado exclusivamente para ello. En España se creó la Empresa Nacional de Residuos Radiactivos, que gestiona los residuos radiactivos de todo tipo generados tanto en las centrales nucleares como en el resto de instalaciones nucleares o radiactivas.

Fuente : Wikipedia

Generación de electricidad por medio de una central nuclear


Probablemente, la aplicación práctica más conocida de la energía nuclear es la generación de energía eléctrica para su uso civil, en particular mediante la fisión de uranio enriquecido. Para ello se utilizan reactores en los que se hace fisionar o fusionar un combustible. El funcionamiento básico de este tipo de instalaciones industriales es similar a cualquier otra central térmica, sin embargo poseen características especiales con respecto a las que usan combustibles fósiles:

Se necesitan medidas de seguridad y control mucho más estrictas. En el caso de los reactores de cuarta generación estas medidas podrían ser menores, mientras que en la fusión se espera que no sean necesarias.
La cantidad de combustible necesario anualmente en estas instalaciones es varios órdenes de magnitud inferior al que precisan las térmicas convencionales.
Las emisiones directas de gases de efecto invernadero en la generación de electricidad son nulas.

A partir de la fisión

Tras su uso exclusivamente militar, se comenzó a plantear la aplicación del conocimiento adquirido a la vida civil. El 20 de diciembre de 1951 fue el primer día que se consiguió generar electricidad con un reactor nuclear (en el reactor americano EBR-I, con una potencia de unos 100 kW), pero no fue hasta 1954 cuando se conectó a la red eléctrica una central nuclear (fue la central nuclear rusa Obninsk, generando 5 MW con solo un 17% de rendimiento térmico). El primer reactor de fisión comercial fue el Calder Hall en Sellafield, que se conectó a la red eléctrica en 1956. El 25 de marzo de 1957 se creó la Comunidad Europea de la Energía Atómica (EURATOM), el mismo día que se creó la Comunidad Económica Europea, entre Bélgica, Francia, Alemania, Italia, Luxemburgo y los Países Bajos. Ese mismo año se creó el Organismo Internacional de Energía Atómica (OIEA). Ambos organismos con la misión, entre otras, de impulsar el uso pacífico de la energía nuclear.

Su desarrollo en todo el mundo experimentó a partir de ese momento un gran crecimiento, de forma muy particular en Francia y Japón, donde la crisis del petróleo de 1973 influyó definitivamente, ya que su dependencia en el petróleo para la generación eléctrica era muy marcada (39 y 73% respectivamente en aquellos años, en 2008 generan un 78 y un 30% respectivamente mediante reactores de fisión).[cita requerida] En 1979 el accidente de Three Mile Island provocó un aumento muy considerable en las medidas de control y de seguridad en las centrales, sin embargo no se detuvo el aumento de capacidad instalada. Pero en 1986 el accidente de Chernóbil, en un reactor RBMK de diseño ruso que no cumplía los requisitos de seguridad que se exigían en occidente, acabó radicalmente con ese crecimiento.

En octubre de 2007 existían 439 centrales nucleares en todo el mundo que generaron 2,7 millones de MWh en 2006. La potencia instalada en 2007 fue de 370.721 MWe. En marzo de 2008 hay 35 centrales en construcción, existen planes para construir 91 centrales nuevas (99.095 MWe) y hay otros 228 propuestos (198.995 MWe).[19] Aunque solo 30 países en el mundo poseen centrales nucleares, aproximadamente el 15% de la energía eléctrica generada en el mundo se produce a partir de energía nuclear.[20]

La mayoría de los reactores son de los llamados de agua ligera (LWR por su sigla en inglés), que utilizan como moderador agua intensamente purificada. En estos reactores el combustible utilizado es uranio enriquecido ligeramente (entre el 3 y el 5%).

En 1965 se construyó la primera central nuclear en España, la Central nuclear José Cabrera.[21] Actualmente se encuentran en funcionamiento ocho centrales nucleares en España: Santa María de Garoña, Almaraz I y II, Ascó I y II, Cofrentes, Vandellós II y Trillo.

Se paralizaron o no entraron en funcionamiento, una vez finalizadas, debido a la moratoria nuclear las centrales de Lemóniz, I y II, Valdecaballeros I y II, Trillo II, Escatrón I y II, Santillán, Regodola y Sayago. Se encuentran desmanteladas o en proceso de desmantelamiento Vandellós I y José Cabrera.

En el año 2002 un tercio, el 33,9% de la energía eléctrica producida en España lo fue en nucleares con un total de 63.016 GWh.

Más tarde se planteó añadir el plutonio fisible generado (239 94 pu) como combustible extra en estos reactores de fisión, aumentando de una forma importante la eficiencia del combustible nuclear y reduciendo así uno de los problemas del combustible gastado. Esta posibilidad incluso llevó al uso del plutonio procedente del armamento nuclear desmantelado en las principales potencias mundiales. Así se desarrolló el combustible MOX, en el que se añade un porcentaje (entre un 3 y un 10% en masa) de este plutonio a uranio empobrecido. Este combustible se usa actualmente como un porcentaje del combustible convencional (de uranio enriquecido). También se ha ensayado en algunos reactores un combustible mezcla de torio y plutonio, que genera una menor cantidad de transuránidos.

Otros reactores utilizan agua pesada como moderador. En estos reactores se puede utilizar uranio natural, es decir, sin enriquecer y además se produce una cantidad bastante elevada de tritio por activación neutrónica. Este tritio se prevé que pueda aprovecharse en futuras plantas de fusión.

Otros proyectos de fisión, que no han superado hoy en día la fase de experimentación, se encaminan al diseño de reactores en los que pueda generarse electricidad a partir de otros isótopos, principalmente el 232 90 th y el 238 92 U.


Fuente : Wikipedia

La fusión nuclear


Ya en la década de los 40, como parte del proyecto Manhattan, se estudió la posibilidad del uso de la fusión en la bomba nuclear. En 1942 se investigó la posibilidad del uso de una reacción de fisión como método de ignición para la principal reacción de fusión, sabiendo que podría resultar en una potencia miles de veces superior. Sin embargo, tras el fin de la segunda guerra mundial, el desarrollo de una bomba de estas carácterísticas no fue considerado primordial. Hasta la explosión de la primera bomba nuclear rusa en 1949. Este evento provocó que en 1950 el presidente estadounidense Harry S. Truman anunciara el comienzo de un proyecto que desarrollara la bomba de hidrógeno. El 1 de noviembre de 1952 se probó la primera bomba nuclear (nombre en clave Mike, parte de la Operación hiedra), con una potencia equivalente a 10.400.000.000 de kg de TNT (10,4 megatones). El 12 de agosto de 1953 la Unión Soviética realiza su primera prueba con un artefacto termonuclear (su potencia alcanzó algunos centenares de kilotones).

Las condiciones que eran necesarias para alcanzar la ignición de un reactor de fusión controlado, sin embargo, no fueron derivadas hasta 1955 por John D. Lawson.[4] Los criterios de Lawson definieron las condiciones mínimas necesarias de tiempo, densidad y temperatura que debía alcanzar el combustible nuclear (núcleos de hidrógeno) para que la reacción de fusión se mantuviera. Sin embargo, ya en 1946 se patentó el primer diseño de reactor termonuclear.[5] En 1951 comenzó el programa de fusión de Estados Unidos, sobre la base del stellarator. En el mismo año comenzó en la Unión Soviética el desarrollo del primer Tokamak, dando lugar a sus primeros experimentos en 1956. Este último diseño logró en 1968 la primera reacción termonuclear cuasiestacionaria jamás conseguida, demostrándose que era el diseño más eficiente conseguido hasta la época. ITER, el diseño internacional que tiene fecha de comienzo de sus operaciones en el año 2016 y que intentará resolver los problemas existentes para conseguir un reactor de fusión de confinamiento magnético, utiliza este diseño

En 1962 se propuso otra técnica para alcanzar la fusión basada en el uso de láseres para conseguir una implosión en pequeñas cápsulas llenas de combustible nuclear (de nuevo núcleos de hidrógeno). Sin embargo hasta la década de los 70 no se desarrollaron láseres suficientemente potentes. Sus inconvenientes prácticos hicieron de esta una opción secundaria para alcanzar el objetivo de un reactor de fusión. Sin embargo, debido a los tratados internacionales que prohibían la realización de ensayos nucleares en la atmósfera, esta opción (básicamente microexplosiones termonucleares) se convirtió en un excelente laboratorio de ensayos para los militares, con lo que consiguió financiación para su continuación. Así se han construido el National Ignition Facility (NIF, con inicio de sus pruebas programadas para 2010) estadounidense y el Laser Megajoule (LMJ, que será completado en el 2010) francés, que persiguen el mismo objetivo de conseguir un dispositivo que consiga mantener la reacción de fusión a partir de este diseño. Ninguno de los proyectos de investigación actualmente en marcha predicen una ganancia de energía significativa, por lo que está previsto un proyecto posterior que pudiera dar lugar a los primeros reactores de fusión comerciales (DEMO para el confinamiento magnético e HiPER para el confinamiento inercial).

La fisión nuclear


En plena Segunda Guerra Mundial, los militares alemanes descubrieron el potencial que estos fenómenos podrían suponer y comenzaron a desarrollar una bomba basada en la fisión: La bomba nuclear. Albert Einstein, en 1939, firmó una carta al presidente Franklin Delano Roosevelt de los Estados Unidos, escrita por Leó Szilárd, en la que se prevenía sobre este hecho.[2]

El 2 de diciembre de 1942, como parte del proyecto Manhattan dirigido por J. Robert Oppenheimer, se construyó el primer reactor del mundo hecho por el hombre (existió un reactor natural en Oklo): el Chicago Pile-1 (CP-1).

Como parte del mismo programa militar, se construyó un reactor mucho mayor en Hanford, destinado a la producción de plutonio, y al mismo tiempo, un proyecto de enriquecimiento de uranio en cascada. El 16 de julio de 1945 fue probada la primera bomba nuclear (nombre en clave Trinity) en el desierto de Alamogordo. En esta prueba se llevó a cabo una explosión equivalente a 19.000.000 de kg de TNT (19 kilotones), una potencia jamás observada anteriormente en ningún otro explosivo. Ambos proyectos desarrollados finalizaron con la construcción de dos bombas, una de uranio enriquecido y una de plutonio (Little Boy y Fat Man) que fueron lanzadas sobre las ciudades japonesas de Hiroshima (6 de agosto de 1945) y Nagasaki (9 de agosto de 1945) respectivamente. El 15 de agosto de 1945 acabó la segunda guerra mundial en el Pacífico con la rendición de Japón. Por su parte el programa de armamento nuclear alemán (liderado este por Werner Heisenberg), no alcanzó su meta antes de la rendición de Alemania el 8 de mayo de 1945.

Posteriormente se llevaron a cabo programas nucleares en la Unión Soviética (primera prueba de una bomba de fisión el 29 de agosto de 1949), Francia y Gran Bretaña, comenzando la carrera armamentística en ambos bloques creados tras la guerra, alcanzando límites de potencia destructiva nunca antes sospechada por el hombre (cada bando podía derrotar y destruir varias veces a todos sus enemigos).

Ya en la década de 1940, el almirante Hyman Rickover propuso la construcción de reactores de fisión no encaminados esta vez a la fabricación de material para bombas, sino a la generación de electricidad. Estos reactores se pensó (acertadamente) que podrían constituir un gran sustituto del diesel en los submarinos. Se construyó el primer reactor de prueba en 1953, botando el primer submarino nuclear (el USS Nautilus (SSN-571)) en 1955. El Departamento de Defensa Estadounidense propuso el diseño y construcción de un reactor nuclear utilizable para la generación eléctrica y propulsión en los submarinos a dos empresas distintas norteamericanas: General Electric y Westinghouse. Estas empresas desarrollaron los reactores de agua ligera tipo BWR y PWR respectivamente.

Estos reactores se han utilizado para la propulsión de buques, tanto de uso militar (submarinos, cruceros, portaaviones,...) como civil (rompehielos y cargueros), donde presentan potencia, reducción del tamaño de los motores, reducción en el almacenamiento de combustible y autonomía no mejorados por ninguna otra técnica existente.

Los mismos diseños de reactores de fisión se trasladaron a diseños comerciales para la generación de electricidad. Los únicos cambios producidos en el diseño con el transcurso del tiempo fueron un aumento de las medidas de seguridad, una mayor eficiencia termodinámica, un aumento de potencia y el uso de las nuevas tecnologías que fueron apareciendo.

Entre 1950 y 1960 Canadá desarrolló un nuevo tipo, basado en el PWR, que utilizaba agua pesada como moderador y uranio natural como combustible, en lugar del uranio enriquecido utilizado por los diseños de agua ligera. Otros diseños de reactores para su uso comercial utilizaron carbono (Magnox, AGR, RBMK o PBR entre otros) o sales fundidas (litio o berilio entre otros) como moderador. Este último tipo de reactor fue parte del diseño del primer avión bombardero (1954) con propulsión nuclear (el US Aircraft Reactor Experiment o ARE). Este diseño se abandonó tras el desarrollo de los misiles balísticos intercontinentales (ICBM).

Otros países (Francia, Italia, Argentina entre otros) desarrollaron sus propios diseños de reactores nucleares para la generación eléctrica comercial.

En 1946 se construyó el primer reactor de neutrones rápidos (Clementine) en Los Álamos, con plutonio como combustible y mercurio como refrigerante. En 1951 se construyó el EBR-I, el primer reactor rápido con el que se consiguió generar electricidad. En 1996, el Superfénix o SPX, fue el reactor rápido de mayor potencia construido hasta el momento (1200 MWe). En este tipo de reactores se pueden utilizar como combustible los radioisótopos del plutonio, el torio y el uranio que no son fisibles con neutrones térmicos (lentos).

En la década de los 50 Ernest Lawrence propuso la posibilidad de utilizar reactores nucleares con geometrías inferiores a la criticidad (reactores subcríticos cuyo combustible podría ser el torio), en los que la reacción sería soportada por un aporte externo de neutrones. En 1993 Carlo Rubbia propone utilizar una instalación de espalación en la que un acelerador de protones produjera los neutrones necesarios para mantener la instalación. A este tipo de sistemas se les conoce como Sistemas asistidos por aceleradores (en inglés Accelerator driven systems, ADS sus siglas en inglés), y se prevé que la primera planta de este tipo (MYRRHA) comience su funcionamiento entre el 2016 y el 2018 en el centro de Mol (Bélgica).[3]

Fuente : Wikipedia

Historia de la Energía Nuclear


Las reacciones nucleares

En 1896 Becquerel descubrió que algunos elementos químicos emitían radiaciones.[1] Tanto él como Marie Curie y otros, estudiaron sus propiedades, descubriendo que estas radiaciones eran diferentes de los ya conocidos Rayos X, sino que poseían propiedades distintas, denominando a los tres tipos que consiguieron descubrir alfa, beta y gamma.

Pronto se vio que todas ellas provenían del núcleo atómico que describió Rutherford en 1911.

Con el uso del neutrino, partícula descrita teóricamente en 1930 por Pauli pero no medida hasta 1956 por Clyde Cowan y sus colaboradores, se pudo explicar la radiación beta.

En 1932 James Chadwick descubrió la existencia del neutrón que Wolfgang Pauli había predicho en 1930, e inmediatamente después Enrico Fermi descubrió que ciertas radiaciones emitidas en fenómenos no muy comunes de desintegración eran en realidad estos neutrones.

En 1934 Fermi se encontraba en un experimento bombardeando núcleos de uranio con estos neutrones recién descubiertos, midiendo nuevas formas de "radiaciones". En 1938, en Alemania, Lise Meitner, Otto Hahn y Fritz Strassmann verificaron los experimentos de Fermi. Es más, en 1939 demostraron que parte de los productos que aparecían al llevar a cabo estos experimentos eran núcleos de bario. Muy pronto llegaron a la conclusión de que eran resultado de la división de los núcleos del uranio. Se había llevado a cabo el descubrimiento de la fisión.

En Francia, Joliot Curie descubrió que además del bario, se emitían neutrones secundarios en esa reacción, haciendo factible la reacción en cadena.

También en 1932 Mark Oliphant teorizó sobre la fusión de núcleos ligeros (de hidrógeno), describiendo poco después Hans Bethe el funcionamiento de las estrellas en base a este mecanismo.

Fuente : Wikipedia

Energía nuclear


Se llama energía nuclear a aquella que se obtiene al aprovechar las reacciones nucleares espontáneas o provocadas por el hombre. Estas reacciones se dan en algunos isótopos de ciertos elementos químicos, siendo el más conocido de este tipo de energía la fisión del uranio-235 (235U), con la que funcionan los reactores nucleares. Sin embargo, para producir este tipo de energía aprovechando reacciones nucleares pueden ser utilizados muchos otros isótopos de varios elementos químicos, como el torio, el plutonio, el estroncio o el polonio.

Los dos sistemas con los que puede obtenerse energía nuclear de forma masiva son la fisión nuclear y la fusión nuclear. La energía nuclear puede transformarse de forma descontrolada, dando lugar al armamento nuclear; o controlada en reactores nucleares en los que se produce energía eléctrica, energía mecánica o energía térmica. Tanto los materiales usados como el diseño de las instalaciones son completamente diferentes en cada caso.

Otra técnica, empleada principalmente en pilas de enorme duración para sistemas que requieren poco consumo eléctrico, es la utilización de generadores termoeléctricos de radioisótopos (GTR, o RTG en inglés), en los que se aprovechan los distintos modos de desintegración para generar electricidad en sistemas de termopares a partir del calor transferido por una fuente radiactiva.

La energía desprendida en esos procesos nucleares suele aparecer en forma de partículas subatómicas en movimiento. Esas partículas, al frenarse en la materia que las rodea, producen energía térmica. Esta energía térmica se transforma en energía mecánica utilizando motores de combustión externa, como las turbinas de vapor. Dicha energía mecánica puede ser empleada en el transporte, como por ejemplo en los buques nucleares; o para la generación de energía eléctrica en centrales nucleares.

La principal característica de este tipo de energía es la alta cantidad de energía que puede producirse por unidad de masa de material utilizado en comparación con cualquier otro tipo de energía conocida por el hombre.

domingo, 27 de abril de 2008

Tecnología y usos de la energía solar


Clasificación por tecnologías y su correspondiente uso más general:

Energía solar pasiva: Aprovecha el calor del sol sin necesidad de mecanismos o sistemas mecánicos.
Energía solar térmica: Para producir agua caliente de baja temperatura para uso sanitario y calefacción.
Energía solar fotovoltaica: Para producir electricidad mediante placas de semiconductores que se excitan con la radiación solar.
Energía solar termoeléctrica: Para producir electricidad con un ciclo termodinámico convencional a partir de un fluido calentado a alta temperatura (aceite térmico)
Energía solar híbrida: Combina la energía solar con la combustión de biomasa, combustibles fósiles, Energía eólica o cualquier otra energía alternativa.
Energía eólico solar: Funciona con el aire calentado por el sol, que sube por una chimenea donde están los generadores.

Rendimiento de la Energía Solar


Cada sistema tiene diferentes rendimientos. Los típicos de una célula fotovoltaica (aislada) de silicio policristalino oscilan alrededor del 10%. Para células de silicio monocristalino, los valores oscilan en el 15%. Los más altos se consiguen con los colectores solares térmicos a baja temperatura (que puede alcanzar el 70% de transferencia de energía solar a térmica).

También la energía solar termoeléctrica de baja temperatura, con el sistema de nuevo desarrollo, ronda el 50% en sus primeras versiones. Tiene la ventaja que puede funcionar 24 horas al día a base de agua caliente almacenada durante las horas de sol.

A continuación, el sistema de discos Stirling (30-40%). Como ventaja añadida, el calor residual puede ser reaprovechado por cogeneración.

Los paneles solares fotovoltaicos tienen un rendimiento bastante bajo (en torno a un 18 %) y no producen calor que se pueda reaprovechar. Sin embargo, son muy apropiados para instalaciones sencillas en azoteas y de autoabastecimiento, aunque su precio es muy alto.

También se estudia obtener energía de la fotosíntesis de algas y plantas, con un rendimiento del 3%.

Según el 21º Estudio del World Energy Council, para el año 2100 el 70% de la energía consumida será de origen solar.

Energía solar


La energía solar es la energía obtenida directamente del Sol. La radiación solar incidente en la Tierra puede aprovecharse, por su capacidad para calentar, o, directamente, a través del aprovechamiento de la radiación en dispositivos ópticos o de otro tipo. Es un tipo de energía renovable y limpia, lo que se conoce como energía verde.

La potencia de la radiación varía según el momento del día, las condiciones atmosféricas que la amortiguan y la latitud. Se puede asumir que en buenas condiciones de irradiación el valor es superior a los 1000 W/m² en la superficie terrestre. A esta potencia se le conoce como irradiancia.

La radiación es aprovechable en sus componentes directa y difusa, o en la suma de ambas. La radiación directa es la que llega directamente del foco solar, sin reflexiones o refracciones intermedias. La difusa es la emitida por la bóveda celeste diurna gracias a los múltiples fenómenos de reflexión y refracción solar en la atmósfera, en las nubes, y el resto de elementos atmosféricos y terrestres. La radiación directa puede reflejarse y concentrarse para su utilización, mientras que no es posible concentrar la luz difusa que proviene de todas las direcciones.

La irradiancia directa normal (o perpendicular a los rayos solares), fuera de la atmósfera recibe el nombre de constante solar y tiene un valor medio de 1354 W/m² (que corresponde a un valor máximo en el perihelio de 1395 W/m² y un valor mínimo en el afelio de 1308 W/m².)

La central mareomotriz de La Rance en Francia


En Francia,en el estuario del río Rance, EDF instaló una central eléctrica mareomotriz. Funcionó durante varias décadas, produciendo electricidad para cubrir las necesidades de una ciudad como Rennes (el 3% de las necesidades de Bretaña). El coste del kwh resultó similar o más barato que el de una central eléctrica convencional, sin el coste de emisiones de gases de efecto invernadero a la atmósfera ni consumo de combustibles fósiles ni los riesgos de las centrales nucleares.

Los problemas medioambientales fueron bastante graves, como aterramiento del río, cambios de salinidad en el estuario y sus proximidades y cambio del ecosistema antes y después de las instalaciones.

Otros proyectos similares, como el de una central mucho mayor prevista en Francia en la zona del Mont Saint Michel, o el de la Bahía de Fundy en Canadá, donde se dan hasta 10 metros de diferencia de marea, o el del estuario del río Severn, en el reino Unido, entre Gales e Inglaterra, no han llegado a ejecutarse por el riesgo de un fuerte impacto medioambiental.

Fuente : Wikipedia

Energía mareomotriz


La energía mareomotriz se debe a las fuerzas de atracción gravitatoria entre la Luna, la Tierra y el Sol. La energía mareomotriz es la que resulta de aprovechar las mareas, es decir, la diferencia de altura media de los mares según la posición relativa de la Tierra y la Luna, y que resulta de la atracción gravitatoria de esta última y del Sol sobre las masas de agua de los mares. Esta diferencia de alturas puede aprovecharse interponiendo partes móviles al movimiento natural de ascenso o descenso de las aguas, junto con mecanismos de canalización y depósito, para obtener movimiento en un eje. Mediante su acoplamiento a un alternador se puede utilizar el sistema para la generación de electricidad, transformando así la energía mareomotriz en energía eléctrica, una forma energética más útil y aprovechable. Es un tipo de energía renovable limpia.

La energía mareomotriz tiene la cualidad de ser renovable, en tanto que la fuente de energía primaria no se agota por su explotación, y es limpia, ya que en la transformación energética no se producen subproductos contaminantes gaseosos, líquidos o sólidos. Sin embargo, la relación entre la cantidad de energía que se puede obtener con los medios actuales y el coste económico y ambiental de instalar los dispositivos para su proceso han impedido una proliferación notable de este tipo de energía.

Otras formas de extraer energía del mar son: las olas, la energía undimotriz; de la diferencia de temperatura entre la superficie y las aguas profundas del océano, el gradiente térmico oceánico; de la salinidad; de las corrientes submarinas o la eólica marina

Ventajas e Inconvenientes de la Energia Geotermica


Ventajas

Es una fuente que evitaría la dependencia energética del exterior.
Los residuos que produce son mínimos y ocasionan menor impacto ambiental que los originados por el petróleo, carbón...

Inconvenientes

En ciertos casos emisión de ácido sulfhídrico que se detecta por su olor a huevo podrido, pero que en grandes cantidades no se percibe y es letal.
En ciertos casos, emisión de CO2, con aumento de efecto invernadero; es inferior al que se emitiría para obtener la misma energía por combustión.
Contaminación de aguas próximas con sustancias como arsénico, amoníaco, etc.
Contaminación térmica.
Deterioro del paisaje.
No se puede transportar (como energía primaria).
No está disponible más que en determinados lugares.

Usos

Generación de electricidad
Aprovechamiento directo del calor
Calefacción y ACS
Refrigeración por absorción

Generación de electricidad

Se produjo energía eléctrica geotérmica por vez primera en Larderello, Italia, en 1904. Desde ese tiempo, el uso de la energía geotérmica para electricidad ha crecido mundialmente a cerca de 8.000 megawatt de los cuales EE. UU. genera 2.700 MW


Tipos de plantas eléctricas

Tres tipos se usan para generar potencia de la energía geotérmica:

1-vapor seco
2-flash
3-binario.

En las plantas a vapor seco se toma el vapor de las fracturas en el suelo y se pasa directamente por una turbina, para mover un generador. En las plantas flash se obtiene agua muy caliente, generalmente a más de 200 °C, y se separa la fase vapor en separadores vapor/agua, y se mueve una turbina con el vapor. En las plantas binarias, el agua caliente fluye a través de intercambiadores de calor, haciendo hervir un fluido orgánico que luego hace girar la turbina. El vapor condensado y el fluido remanente geotérmico de los tres tipos de plantas se vuelve a inyectar en la roca caliente para hacer más vapor. El calor de la tierra es considerado como una energía sostenible. El calor de la Tierra es tan vasto que solo se puede extraer una fracción, por lo que el futuro es relevante para las necesidades de energía mundial.

"Los Géiseres" (The Geysers), a 145 km al norte de San Francisco es la planta más grande de las que funcionan con vapor seco. La planta comenzó a fncionar en 1960 con 1.360 MW de capacidad instalada y genera 1.000 MW netos. La "Calpine Corporation" es dueña de 19 de las 21 plantas en The Geysers, y en EE.UU. es el productor de energía renovable geotérmica más grande. Las otras dos plantas son propiedad de la "Northern California Power Agency" y "Santa Clara Electric". Cada actividad de una planta geotermica afecta a todas las vecinas, por lo que la propiedad consolidada de "The Geysers" ha sido beneficioso debido a la operación sincrónica y cooperativa, dejando de lado cualquier ventaja unitaria de corto término. Los Geiseres se recargan por inyección de los efluentes cloacales de las ciudades de Santa Rosa y de Lake County, California con plantas depuradoras del agua residual. Anteriormente, esos efluentes cloacales se arrojaban a ríos y arroyos. Ahora se introducen en el yacimiento geotermica, recargándolo para producir vapor. Otra gran cuenca geotermica es el centro sur de California, en la orilla sudeste del Mar Salton Salton Sea, cerca de las ciudades de Niland y de Calipatria. Desde 2001, hay 15 plantas geotermicas produciendo electricidad. CalEnergy es dueña de 8 plantas y el resto son de varias compañías. La producción total de las plantas es de 570 MW. En las provincias geológicas "Basin" y "Range" en Nevada, sudeste de Oregon, sudoeste de Idaho, Arizona y oeste de Utah se está produciendo un rápido desarrollo geotermal. En los 1980shabía varias plantas pequeñas, cuando los precios de la energía eran altos. En los 1990s bajó el costo de la energía, no haciéndose desde entonces nuevas instalaciones. En los 2000s resurge la industria geotermica por las nuevas subidas del precio de la energía: plantas en Nevada "Steamboat", "Brady/Desert Peak", "Dixie Valley", "Soda Lake", "Stillwater" y Beowawe" que producen conjuntamente 235 MW. Y más empresas están preparando nuevos proyectos. La energía geotermica es muy eficiente en costos en la zona del Rift, África. KenGen de Kenya ha hecho dos plantas: Olkaria I (45 MW) y Olkaria II (65 MW), y se prevé una tercera planta privada, Olkaria III (48 MW), explotada por la Cía. israelí, especializada en geotermia, Ormat. Hay planes para incrementar la capacidad de producción en otros 576 MW para 2017, cubriendo el 25 % de las necesidades eléctricas de Kenya, y reduciendo la dependencia del combustible importado. Se genera electricidad "geotermica" en más de 20 países. Islandia produce el 17% de sus necesidades de la energía geotermica, EE. UU., Italia, Francia, Nueva Zelandia, México, Nicaragua, Costa Rica, Rusia, Filipinas (1.931 MW (2º tras EE.UU., 27 % de su electricidad), Indonesia y Japón. Canadá que tiene 30.000 instalaciones de energía geotermica para dar calefacción domiciliaria y a comercios) tiene una planta experimental geotermico-eléctrica en la Montaña Meager Mountain, área de Pebble Creek en la Columbia Británica, con 100 MW en futuro próximo.


Desalinización

Douglas Firestone comenzó en la desalinización con el sistema evaporación / condensación con aire caliente en 1998, probando que el agua geotermal se puede usar económicamente para producir agua desalinizada, en 2001.

En 2003, el profesor Ronald A. Newcomb (Universidad de San Diego State: Centro para Tecnologías Avanzadas de Agua) trabajó con Firestone para mejorar el proceso de la energía geotermal para desalinización.

En 2005 se ajusta el 5º prototipo desalinizador “Delta T” que usa un ciclo de aire forzado caliente, presión atmosférica, ciclo geotermal de evaporación condensación. EL aparato se surte de agua de mar filtrada en el Instituto Scripps de Oceanografía, reduciendo la concentración de sal de 35.000 ppm a 51 ppm a/a.[1]


Inyección de agua

En varios sitios, ha ocurrido que los depósitos de magma se agotaron, cesando de dar energía geotérmica, quizás ayudado por la inyección del agua residual fría, en la recarga del acuífero caliente. O sea que la recarga por reinyección, puede enfriar el recurso, a menos que se haga un cuidadoso manejo. En al menos una localidad, el enfriamiento fue resultado de pequeños pero frecuentes terremotos (ver enlace externo abajo). Esto ha traído una discusión si los dueños de una planta son responsables del daño que un temblor causa.


Extinción del calor

Así como hay yacimientos geotermicos capaces de proporcionar energía durante muchas décadas, otros pueden agotarse y enfriarse.[2] En un informe, el gobierno de Islandia dice: debe entenderse que la energía geotérmica no es estrictamente renovable en el mismo sentido que la hídráulica.

Fuente : Wikipedia

Tipos de fuentes geotérmicas



Se obtiene energía geotérmica por extracción del calor interno de la Tierra. En áreas de aguas termales muy calientes a poca profundidad, se perfora por fracturas naturales de las rocas basales o dentro de rocas sedimentarios. El agua caliente o el vapor pueden fluir naturalmente, por bombeo o por impulsos de flujos de agua y de vapor (flashing). El método a elegir depende del que en cada caso sea económicamente rentable. Un ejemplo, en Inglaterra, fue el "Proyecto de Piedras Calientes HDR" (sigla en inglés: HDR, Hot Dry Rocks), abandonado después de comprobar su inviabilidad económica en 1989. Los programas HDR se están desarrollando en Australia, Francia, Suiza, Alemania. Los recursos de magma (rocas fundidas) ofrecen energía geotérmica de altísima temperatura, pero con la tecnología existente no se pueden aprovechar económicamente esas fuentes.

En la mayoría de los casos la explotación debe hacerse con dos pozos (o un número par de pozos), de modo que por uno se obtiene el agua caliente y por otro se vuelve a reinyectar en el acuífero, tras haber enfriado el caudal obtenido. Las ventajas de este sistema son múltiples:

Hay menos probabilidades de agotar el yacimiento térmico, puesto que el agua reinyectada contiene todavía una importante cantidad de energía térmica.
Tampoco se agota el agua del yacimiento, puesto que la cantidad total se mantiene.
Las posibles sales o emisiones de gases disueltos en el agua no se manifiestan al circular en circuito cerrado por las conducciones, lo que evita contaminaciones.

Tipos de yacimientos geotérmicos según la temperatura del agua
Energía geotérmica de alta temperatura. La energía geotérmica de alta temperatura existe en las zonas activas de la corteza. Esta temperatura está comprendida entre 150 y 400 ºC, se produce vapor en la superficie y mediante una turbina, genera electricidad. Se requieren varios condiciones para que se dé la posibilidad de existencia de un campo geotérmico: una capa superior compuesta por una cobertura de rocas impermeables; un acuífero, o depósito, de permeabilidad elevada, entre 0,3 y 2 km de profundidad; suelo fracturado que permite una circulación de fluidos por convección, y por lo tanto la trasferencia de calor de la fuente a la superficie, y una fuente de calor magmático, entre 3 y 15 km de profundidad, a 500-600 ºC. La explotación de un campo de estas características se hace por medio de perforaciones según técnicas casi idénticas a las de la extracción del petróleo.
Energía geotérmica de temperaturas medias. La energía geotérmica de temperaturas medias es aquella en que los fluidos de los acuíferos están a temperaturas menos elevadas, normalmente entre 70 y 150 ºC. Por consiguiente, la conversión vapor-electricidad se realiza con un rendimiento menor, y debe explotarse por medio de un fluido volátil. Estas fuentes permiten explotar pequeñas centrales eléctricas, pero el mejor aprovechamiento puede hacerse mediante sistemas urbanos reparto de calor para su uso en calefacción y en refrigeración (mediante máquinas de absorción)
Energía geotérmica de baja temperatura. La energía geotérmica de temperaturas bajas es aprovechable en zonas más amplias que las anteriores; por ejemplo, en todas las cuencas sedimentarias. Es debida al gradiente geotérmico. Los fluidos están a temperaturas de 50 a 70 ºC.
Energía geotérmica de muy baja temperatura. La energía geotérmica de muy baja temperatura se considera cuando los fluidos se calientan a temperaturas comprendidas entre 20 y 50 ºC. Esta energía se utiliza para necesidades domésticas, urbanas o agrícolas.
Las fronteras entre los diferentes tipos de energías geotérmicas es arbitraria; si se trata de producir electricidad con un rendimiento aceptable la temperatura mínima está entre 120 y 180 ºC, pero las fuentes de temepratura más baja son muy apropiadas para los sistemas de calefacción urbana.

Energía geotérmica


La energía geotérmica es aquella energía que puede ser obtenida por el hombre mediante el aprovechamiento del calor del interior de la Tierra. El calor del interior de la Tierra se debe a varios factores, entre los que caben destacar el gradiente geotérmico, el calor radiogénico, etc. Geotérmico viene del griego geo, "Tierra", y thermos, "calor"; literalmente "calor de la Tierra".

Aspectos medioambientales


Generalmente se combina con centrales térmicas, lo que lleva a que existan quienes critican que realmente no se ahorren demasiadas emisiones de dióxido de carbono.
Existen parques eólicos en España en espacios protegidos como ZEPAs (Zona de Especial Protección de Aves) y LIC (Lugar de Importancia Comunitaria) de la Red Natura 2000, lo que es una contradicción. Si bien la posible inserción de alguno de estos parques eólicos en las zonas protegidas ZEPAS y LIC tienen un impacto reducido debido al aprovechamiento natural de los recursos, cuando la expansión humana invade estas zonas, alterándolas sin que con ello se produzca ningún bien.
Al comienzo de su instalación, los lugares seleccionados para ello coincidieron con las rutas de las aves migratorias, o zonas donde las aves aprovechan vientos de ladera, lo que hace que entren en conflicto los aerogeneradores con aves y murciélagos. Afortunadamente los niveles de mortandad son muy bajos en comparación con otras causas como por ejemplo los atropellos (ver gráfico). Aunque algunos expertos independientes aseguran que la mortandad es alta. Actualmente los estudios de impacto ambiental necesarios para el reconocimiento del plan del parque eólico tienen en consideración la situación ornitológica de la zona. Además, dado que los aerogeneradores actuales son de baja velocidad de rotación, el problema de choque con las aves se está reduciendo.
El impacto paisajístico es una nota importante debido a la disposición de los elementos horizontales que lo componen y la aparición de un elemento vertical como es el aerogenerador. Producen el llamado efecto discoteca: este efecto aparece cuando el sol está por detrás de los molinos y las sombras de las aspas se proyectan con regularidad sobre los jardines y las ventanas, parpadeando de tal modo que la gente denominó este fenómeno: “efecto discoteca”. Esto, unido al ruido, puede llevar a la gente hasta un alto nivel de estrés, con efectos de consideración para la salud. No obstante, la mejora del diseño de los aerogeneradores ha permitido ir reduciendo el ruido que producen.
La apertura de pistas y la presencia de operarios en los parques eólicos hace que la presencia humana sea constante en lugares hasta entonces poco transitados. Ello afecta también a la fauna.

Fuente : Wikipedia

Inconvenientes de la energía eólica


Aspectos técnicos
Debido a la falta de seguridad en la existencia de viento, la energía eólica no puede ser utilizada como única fuente de energía eléctrica. Por lo tanto, para salvar los "valles" en la producción de energía eólica es indispensable un respaldo de las energías convencionales (centrales de carbón o de ciclo combinado, por ejemplo, y más recientemente de carbón limpio). Sin embargo, cuando respaldan la eólica, las centrales de carbón no pueden funcionar a su rendimiento óptimo, que se sitúa cerca del 90% de su potencia. Tienen que quedarse muy por debajo de este porcentaje, para poder subir sustancialmente su producción en el momento en que afloje el viento. Por tanto, en el modo "respaldo", las centrales térmicas consumen más combustible por kW/h producido. También, al subir y bajar su producción cada vez que cambia la velocidad del viento, se desgasta más la maquinaría. Este problema del respaldo en España se va a tratar de solucionar mediante una interconexión con Francia que permita emplear el sistema europeo como colchón de la variabilidad eólica.

Además, la variabilidad en la producción de energía eólica tiene 2 importantes consecuencias:

Para evacuar la electricidad producida por cada parque eólico (que suelen estar situados además en parajes naturales apartados) es necesario construir unas líneas de alta tensión que sean capaces de conducir el máximo de electricidad que sea capaz de producir la instalación. Sin embargo, la media de tensión a conducir será mucho más baja. Esto significa poner cables 4 veces más gruesos, y a menudo torres más altas, para acomodar correctamente los picos de viento.
Es necesario suplir las bajadas de tensión eólicas "instantáneamente" (aumentando la producción de las centrales térmicas), pues sino se hace así se producirían, y de hecho se producen apagones generalizados por bajada de tensión. Este problema podría solucionarse mediante dispositivos de almacenamiento de energía eléctrica. Pero la energía eléctrica producida no es almacenable: es instantáneamente consumida o perdida.
Además, otros problemas son:

Técnicamente, uno de los mayores inconvenientes de los aerogeneradores es el llamado hueco de tensión. Ante uno de estos fenómenos, las protecciones de los aerogeneradores con motores de jaula de ardilla se desconectan de la red para evitar ser dañados y, por tanto, provocan nuevas perturbaciones en la red, en este caso, de falta de suministro. Este problema se soluciona bien mediante la modificación de la aparamenta eléctrica de los arogeneradores, lo que resulta bastante costoso, bien mediante la utilización de motores síncronos.
Uno de los grandes inconvenientes de este tipo de generación, es la dificultad intrínseca de prever la generación con antelación. Dado que los sistemas eléctricos son operados calculando la generación con un día de antelación en vista del consumo previsto, la aleatoriedad del viento plantea serios problemas. Los últimos avances en previsión del viento han mejorado muchísimo la situación, pero sigue siendo un problema. Igualmente, grupos de generación eólica no pueden utilizarse como nudo oscilante de un sistema.
Además de la evidente necesidad de una velocidad mínima en el viento para poder mover las aspas, existe también una limitación superior: una máquina puede estar generando al máximo de su potencia, pero si el viento aumenta lo justo para sobrepasar las especificaciones del molino, es obligatorio desconectar ese circuito de la red o cambiar la inclinación de las aspas para que dejen de girar, puesto que con viento de altas velocidades la estructura puede resultar dañada por los esfuerzos que aparecen en el eje. La consecuencia inmediata es un descenso evidente de la producción eléctrica, a pesar de haber viento en abundancia, y otro factor más de incertidumbre a la hora de contar con esta energía en la red eléctrica de consumo.

Ventajas de la energía eólica


Es un tipo de energía renovable ya que tiene su origen en procesos atmosféricos debidos a la energía que llega a la Tierra procedente del Sol.
Es una energía limpia ya que no produce emisiones atmosféricas ni residuos contaminantes.
No requiere una combustión que produzca dióxido de carbono (CO2), por lo que no contribuye al incremento del efecto invernadero ni al cambio climático.
Puede instalarse en espacios no aptos para otros fines, por ejemplo en zonas desérticas, próximas a la costa, en laderas áridas y muy empinadas para ser cultivables.
Puede convivir con otros usos del suelo, por ejemplo prados para uso ganadero o cultivos bajos como trigo, maíz, patatas, remolacha, etc.
Crea un elevado número de puestos de trabajo en las plantas de ensamblaje y las zonas de instalación.
Su instalación es rápida, entre 6 meses y un año.
Su inclusión en un sistema ínter ligado permite, cuando las condiciones del viento son adecuadas, ahorrar combustible en las centrales térmicas y/o agua en los embalses de las centrales hidroeléctricas.
Su utilización combinada con otros tipos de energía, habitualmente la solar, permite la autoalimentación de viviendas, terminando así con la necesidad de conectarse a redes de suministro, pudiendo lograrse autonomías superiores a las 82 horas, sin alimentación desde ninguno de los 2 sistemas.
La situación actual permite cubrir la demanda de energía en España un 30% debido a la múltiple situación de los parques eólicos sobre el territorio, compensando la baja producción de unos por falta de viento con la alta producción en las zonas de viento. Los sistemas del sistema eléctrico permiten estabilizar la forma de onda producida en la generación eléctrica solventando los problemas que presentaban los aerogeneradores como productores de energía al principio de su instalación.
Posibilidad de construir parques eólicos en el mar, donde el viento es más fuerte, más constante y el impacto social es menor, aunque aumentan los costes de instalación y mantenimiento. Los parques offshore son una realidad en los países del norte de Europa, donde la generación eólica empieza a ser un factor bastante importante.

Energía eólica


La energía eólica es la energía obtenida del viento, es decir, aquella que se obtiene de la energía cinética generada por efecto de las corrientes de aire y así mismo las vibraciones que el aire produce.

El término eólico viene del latín Aeolicus, perteneciente o relativo a Éolo o Eolo, dios de los vientos en la mitología griega y, por tanto, perteneciente o relativo al viento. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas. Es un tipo de energía verde.

La energía del viento está relacionada con el movimiento de las masas de aire que se desplazan de áreas de alta presión atmosférica hacia áreas adyacentes de baja presión, con velocidades proporcionales al gradiente de presión.

Los vientos son generados a causa del calentamiento no uniforme de la superficie terrestre por parte de la radiación solar, entre el 1 y 2% de la energía proveniente del sol se convierte en viento. De día, las masas de aire sobre los océanos, los mares y los lagos se mantienen frías con relación a las áreas vecinas situadas sobre las masas continentales.

Los continentes absorben una menor cantidad de luz solar, por lo tanto el aire que se encuentra sobre la tierra se expande, y se hace por lo tanto más liviana y se eleva. El aire más frío y más pesado que proviene de los mares, océanos y grandes lagos se pone en movimiento para ocupar el lugar dejado por el aire caliente

Para poder aprovechar la energía eólica es importante conocer las variaciones diurnas y nocturnas y estacionales de los vientos, la variación de la velocidad del viento con la altura sobre el suelo, la entidad de las ráfagas en espacios de tiempo breves, y valores máximos ocurridos en series históricas de datos con una duración mínima de 20 años. Es también importante conocer la velocidad máxima del viento. Para poder utilizar la energía del viento, es necesario que este alcance una velocidad mínima de 12 km/h, y que no supere los 65 km/h.[1]

La energía del viento es utilizada mediante el uso de máquinas eólicas (o aeromotores) capaces de transformar la energía eólica en energía mecánica de rotación utilizable, ya sea para accionar directamente las máquinas operatrices, como para la producción de energía eléctrica. En este último caso, el sistema de conversión, (que comprende un generador eléctrico con sus sistemas de control y de conexión a la red) es conocido como aerogenerador.

La baja densidad energética, de la energía eólica por unidad de superficie, trae como consecuencia la necesidad de proceder a la instalación de un número mayor de máquinas para el aprovechamiento de los recursos disponibles. El ejemplo más típico de una instalación eólica está representada por los "parques eólicos" (varios aerogeneradores implantados en el territorio conectados a una única línea que los conecta a la red eléctrica local o nacional).

En la actualidad se utiliza, sobre todo, para mover aerogeneradores. En estos la energía eólica mueve una hélice y mediante un sistema mecánico se hace girar el rotor de un generador, normalmente un alternador, que produce energía eléctrica. Para que su instalación resulte rentable, suelen agruparse en concentraciones denominadas parques eólicos.

Si bien los parques eólicos son relativamente recientes, iniciando a popularizarse en las décadas de los 80 - 90, desde hace mucho tiempo la energía eólica se ha utilizado en otras aplicaciones, como: moler granos o bombear agua, basta recordar los ya famosos molinos de viento en las andanzas de Don Quijote.

Aerogeneradores
Los molinos de viento se han usado desde hace muchos siglos para moler el grano, bombear agua u otras tareas que requieren energía. En la actualidad, sofisticados molinos de viento se usan para generar electricidad, especialmente en áreas expuestas a vientos frecuentes, como zonas costeras, alturas montañosas o islas.

El impacto ambiental de este sistema de obtención de energía es bajo. Es sobre todo estético, porque deforman el paisaje, aunque también hay que considerar la muerte de aves por choque con las aspas de los molinos.


Molinos
Un molino es una máquina que transforma el viento en energía aprovechable. Esta energía proviene de la acción de la fuerza del viento sobre unas aspas oblicuas unidas a un eje común. El eje giratorio puede conectarse a varios tipos de maquinaria para moler grano, bombear agua o generar electricidad. Cuando el eje se conecta a una carga, como una bomba, recibe el nombre de molino de viento. Si se usa para producir electricidad se le denomina generador de turbina de viento.


Los primeros molinos
Los molinos movidos por el viento tienen un origen remoto. En el siglo VII d.C. ya se utilizaban molinos elementales en Persia (hoy, Irán) para el riego y moler el grano. En estos primeros molinos la rueda que sujetaba las aspas era horizontal y estaba soportada sobre un eje vertical. Estas máquinas no resultaban demasiado eficaces, pero aún así se extendieron por China y el Oriente Próximo. En Europa los primeros molinos aparecieron en el siglo XII en Francia e Inglaterra y se distribuyeron por el continente. Eran unas estructuras de madera, conocidas como torres de molino, que se hacían girar a mano alrededor de un poste central para levantar sus aspas al viento. El molino de torre se desarrolló en Francia a lo largo del siglo XIV. Consistía en una torre de piedra coronada por una estructura rotativa de madera que soportaba el eje del molino y la maquinaria superior del mismo. Estos primeros ejemplares tenían una serie de características comunes. De la parte superior del molino sobresalía un eje horizontal. De este eje partían de cuatro a ocho aspas, con una longitud entre 3 y 9 metros. Las vigas de madera se cubrían con telas o planchas de madera. La energía generada por el giro del eje se transmitía, a través de un sistema de engranajes, a la maquinaria del molino emplazada en la base de la estructura.


Coste de la energía eólica
El coste de la unidad de energía producida en instalaciones eólicas se deduce de un cálculo bastante complejo. Para su evaluación se deben tener en cuenta diversos factores entre los cuales:

El coste inicial o inversión inicial, el costo del aerogenerador incide en aproximadamente el 60 a 70%. El costo medio de una central eólica es de 1.000 Euros por kW de potencia instalada, variable desde 1250 €/kW para máquinas con una unos 147 kW de potencia, hasta 880 €/kW para máquinas de 600 kW;
Debe considerarse la vida útil de la instalación (aproximadamente 20 años) y la amortización de este costo;
Los costos financieros;
Los costos de operación y mantenimiento (variables entre el 1 y el 3% de la inversión);
La energía global producida en un período de un año. Esta es función de las características del aerogenerador y de las características del viento en el lugar donde se ha instalado.

Producción por países
Capacidad total de energía eólica instalada
(fin de año y últimas estimaciones)[2]
Capacidad (MW)
Posición País 2006[3] 2005 2004
1 Alemania 20.622 18.428 16.628
2 España 11.730 10.028 8.504
3 USA 11.603 9.149 6.725
4 India 6.270 4.430 3.000
5 Dinamarca 3.136 3.128 3.124
6 China 2.405 1.260 764
7 Italia 2.123 1.717 1.265
8 Reino Unido 1.963 1.353 888
9 Portugal 1.716 1.022 522
10 Francia 1.567 757 386
Total mundial 73.904 58.982 47.671

sábado, 26 de abril de 2008

La Agencia de la Energía pide más centrales nucleares



Sucio, caro y, sobre todo, inseguro y vulnerable. Así es el modelo energético en todo el mundo, sin distinciones entre países ricos y países pobres, Norte y Sur, Oriente y Occidente. El uso de combustibles fósiles, como el petróleo, el gas y el carbón, amenaza con enloquecer el clima; el progresivo agotamiento de las reservas salta a la vista y se deja notar en los precios, y éste es sólo el principio. Un informe de la Agencia Internacional de la Energía (AIE), que se presentará el próximo martes, antepone un problema aún más grave. "Si nada cambia, el futuro energético es insostenible: la producción de petróleo y gas está concentrada en un puñado de países, un número cada vez más reducido y con el denominador común de la inestabilidad política. Con la demanda en continua expansión, es evidente que ahora mismo la seguridad en el suministro energético es muy deficiente", según el diagnóstico de Fatih Birol, responsable de Análisis de la AIE y director del World Economic Outlook 2006.

El consenso sobre la diagnosis es amplio. Pero las soluciones son más controvertidas. En el informe, solicitado por el G 8 -que agrupa a los países más ricos del planeta-, la AIE recomienda a los Gobiernos incentivar la eficiencia y el ahorro de energía, y las inversiones en energías renovables. Así se matan varios pájaros de un tiro: se consumen menos reservas -al ritmo actual el agotamiento del petróleo llegaría en unos 40 años y el del gas, en 70-, se contamina menos y se reduce la dependencia energética.

Hay un tercer consejo envuelto en un halo de polémica: el informe insta a reactivar la construcción de centrales nucleares. "No vemos la energía nuclear como una religión", advierte Birol en una entrevista con este diario. Pero la AIE proporciona munición al G 8 para combatir "con cifras", en opinión de su responsable de análisis, las principales críticas que se asocian a esta fuente de energía.

En el mundo hay 443 centrales. El peso de la energía nuclear sobre el total es del 14,9%. "Si se quiere mantener esa proporción o incluso aumentarla un poco como fórmula que contribuya a combatir el cambio climático y la inseguridad en el suministro energético hay que empezar a construir plantas", dice Birol.

El estudio pone énfasis en los costes energéticos: con el precio del petróleo y el gas disparados, producir un kilovatio / hora de energía nuclear cuesta menos de cinco centavos por dólar, según la AIE: menos que con el crudo, con el gas e incluso en condiciones de competir con el carbón, por las penalizaciones que establece el protocolo de Kioto a las emisiones contaminantes que produce.

Los últimos 25 años de la industria nuclear no han sido un camino de rosas. Los accidentes de Three Mile Island (1979) y Chernóbil (1986) encendieron todas las alarmas de seguridad. Los expertos consideraban, además, que la energía nuclear era excesivamente cara. ¿Qué ha cambiado desde entonces para que varios países -Finlandia, China, India, Japón y Corea del Sur, entre otros- construyan nuevas centrales? ¿Qué ha sucedido para que incluso algunos ecologistas modifiquen su actitud? Luis Atienza, ex ministro de Industria y presidente de Red Eléctrica de España (REE) asegura que el cambio climático y el alza de precios del petróleo y el gas "están claramente tras la reactivación del debate nuclear". Y apunta directamente a las "serias amenazas que se ciernen sobre la seguridad en el suministro energético".

La dependencia energética de la Organización para la Cooperación y el Desarrollo Económico (OCDE) asciende al 56%: los países ricos tienen que comprar más de la mitad de la energía que consumen, y esa cifra ascenderá al 66% en el año 2030 si nada cambia.

El caso español es aún más sangrante: la dependencia energética alcanza hoy el 85%. "España es una isla energética", sostiene Atienza. Para el ex ministro, "asegurar el suministro es aún más importante que en el resto de la OCDE. Para ello es necesario mejorar la eficiencia y desarrollar energías renovables, pero no se puede olvidar el papel de la energía nuclear en ese mix".

La política energética del Gobierno de José Luis Rodríguez Zapatero se ha mantenido siempre en un precario equilibrio: la sustitución gradual de la energía nuclear -promesa electoral del PSOE- "tiene que ser compatible con el objetivo de asegurar el suministro", según fuentes del Ejecutivo.

Arturo Gonzalo Aizpiri, secretario general para la prevención de la contaminación y el cambio climático del Ministerio de Medio Ambiente, se muestra "contrario" al enfoque de la energía nuclear "como alternativa masiva ante la indiscutible necesidad de cambio del modelo energético". Gonzalo Aizpiri resume los retos que tienen ante sí las nucleares: "Hay que aumentar la seguridad y reducir drásticamente los problemas que generan los residuos. Además, el uranio no es demasiado abundante", sostiene contra el criterio de la AIE.

El organismo internacional solicita al G 8, así como a China e India, un giro en la política energética para reducir costes: las necesidades de inversión para asegurar la generación de energía y reducir el impacto ambiental ascienden a 20 billones de dólares hasta 2030 (15,7 billones de euros), más de la mitad en países en desarrollo.

Un mayor peso de la energía nuclear tampoco parece que vaya a rebajar mucho esa factura. El despliegue de nucleares que persigue la AIE reduciría un 10% las emisiones de CO2. "Cuando se habla de que el kilovatio / hora de origen nuclear es más barato no se tienen en cuenta costes como la seguridad, el tratamiento de residuos radioactivos o el alto coste de construir las centrales", apunta Marcel Cordech, secretario de la Asociación para el Estudio de los Recursos Energéticos. "Por no hablar de otros aspectos inquietantes como el despliegue de centrales en países como Irán y Corea del Norte", apostilla.

Fuente : Elpais.com